

On certain Lagrangian subvarieties in minimal resolutions of Kleinian singularities

Mengwei Hu

Yale University

Seattle Noncommutative Algebra Conference
December 15–19, 2025

arXiv: 2504.08717

Overview

$$\begin{array}{ccc} \text{minimal} & & \text{Kleinian} \\ \text{resolution} & & \text{singularity} \\ \widetilde{X} & \xrightarrow{\pi} & X \curvearrowleft \theta \\ \cup & & \cup \\ \pi^{-1}(X^\theta) & & X^\theta \end{array}$$

anti-Poisson
involution

Lagrangian
subvariety

Goal: Describe X^θ and $\pi^{-1}(X^\theta)$ as schemes.

Kleinian singularities

Let $\Gamma \subset \mathrm{SL}_2(\mathbb{C})$ be a finite subgroup.

The **Kleinian singularity** is the quotient $X := \mathbb{C}^2/\Gamma = \mathrm{Spec} \mathbb{C}[u, v]^\Gamma$.

Example

$$\Gamma = \{\pm I_2\},$$

$$\mathbb{C}[u, v]^\Gamma = \mathbb{C}[x = u^2, y = v^2, z = uv] = \mathbb{C}[x, y, z]/(xy - z^2).$$

Fact (Klein, 1884)

$\mathbb{C}^2/\Gamma \hookrightarrow \mathbb{C}^3$ (one relation), and \mathbb{C}^2/Γ has an isolated singularity at 0.

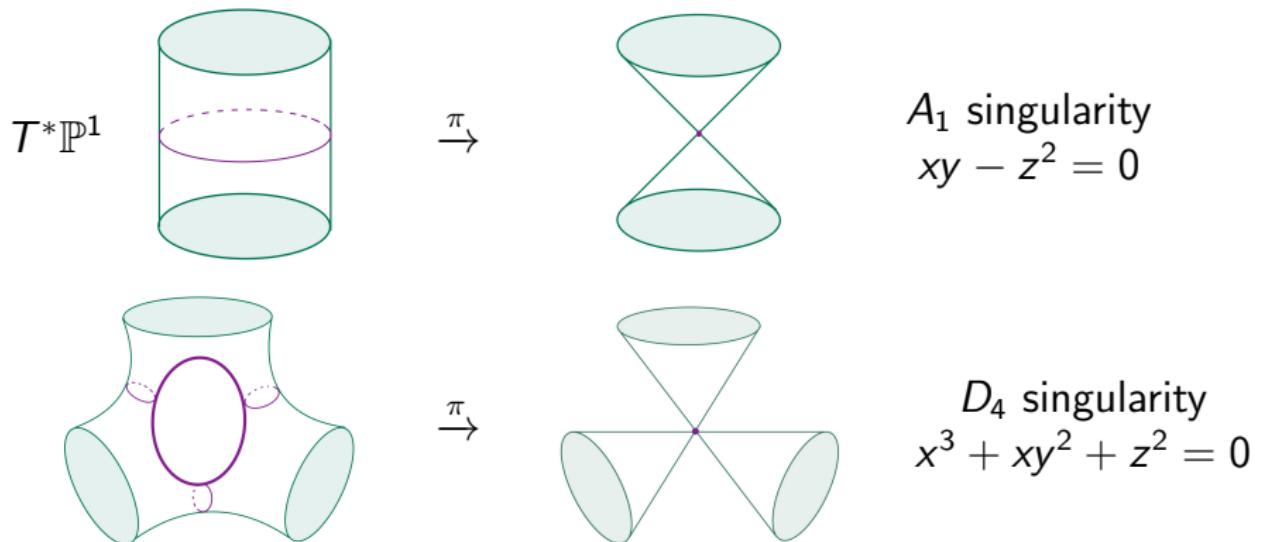
Minimal resolutions

McKay correspondence: Kleinian singularities are in bijection with ADE Dynkin diagrams.

$\pi: \tilde{X} \rightarrow X$, minimal resolution.

$\pi^{-1}(0) = \text{union of } \mathbb{P}^1\text{'s, according dually to ADE Dynkin diagrams.}$

Examples:



Anti-Poisson involutions & fixed point loci

Set $X := \mathbb{C}^2/\Gamma$. The algebra of functions $\mathbb{C}[X] = \mathbb{C}[u, v]^\Gamma$ is a graded Poisson algebra with **Poisson bracket**

$$\{f_1, f_2\} = \frac{\partial f_1}{\partial u} \frac{\partial f_2}{\partial v} - \frac{\partial f_1}{\partial v} \frac{\partial f_2}{\partial u}.$$

Definition: An **anti-Poisson involution** of $X = \mathbb{C}^2/\Gamma$ is a graded algebra involution $\theta: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ such that

$$\theta(\{f_1, f_2\}) = -\{\theta(f_1), \theta(f_2)\}, \quad \forall f_1, f_2 \in \mathbb{C}[X].$$

Definition: The **fixed point locus** is $X^\theta := \text{Spec } \mathbb{C}[X]/I$, where $I = (\theta(f) - f, f \in \mathbb{C}[X]).$

Anti-Poisson involution & fixed-point loci

Proposition 1 (H.)

There are finitely many anti-Poisson involutions on \mathbb{C}^2/Γ up to conjugation by graded Poisson automorphisms.

Proposition 2 (H.)

- The fixed point locus X^θ is reduced.
- If X^θ is not a single point, each irreducible component of X^θ is either \mathbb{A}^1 or a cusp.

Example: Type A_n singularity $X = \text{Spec } \mathbb{C}[x, y, z]/(xy - z^{n+1})$.

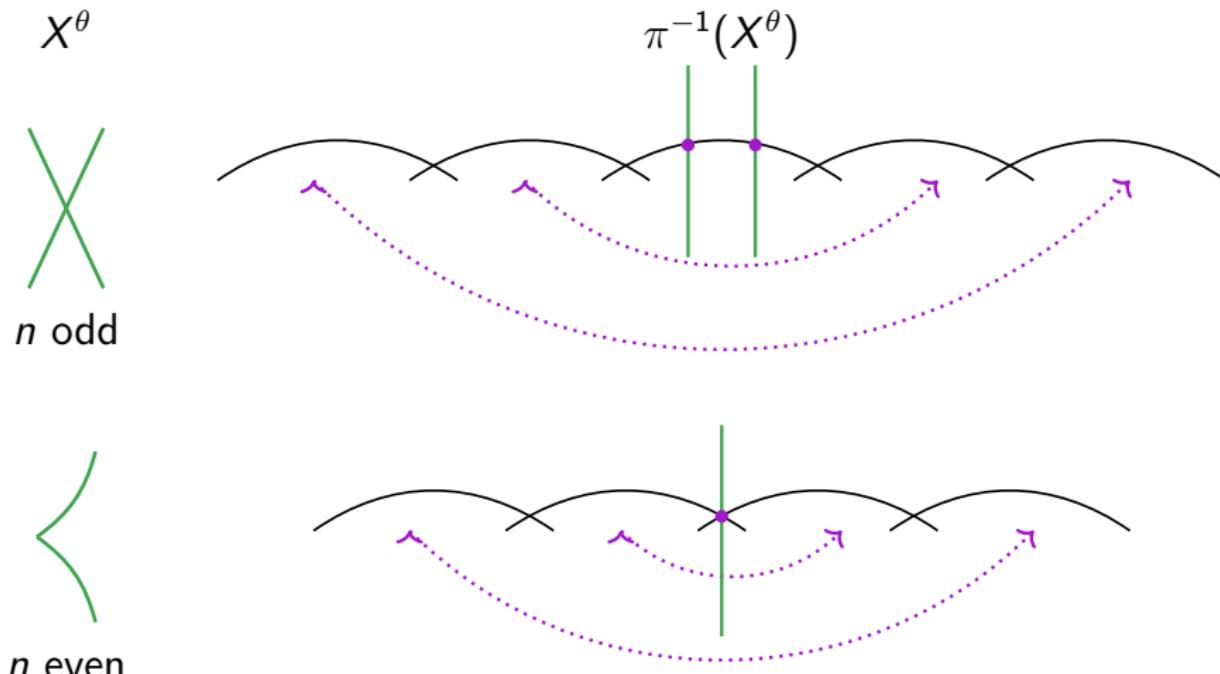
Then θ swapping $x \leftrightarrow y$ is an anti-Poisson involution. We have

$X^\theta = \text{Spec } \mathbb{C}[x, y, z]/(xy - z^{n+1}, x - y) \simeq \text{Spec } \mathbb{C}[x, z]/(x^2 - z^{n+1})$,
which is a union of two \mathbb{A}^1 's when n is odd, a cusp when n is even.

Preimage of fixed point loci under minimal resolutions

Recall $\pi: \tilde{X} \rightarrow X$ minimal resolution. $0 \in X^\theta \Rightarrow \pi^{-1}(0) \subset \pi^{-1}(X^\theta)$.

Example: Consider type A_n singularities with θ swapping $x \leftrightarrow y$.



Lift anti-Poisson involutions

$\pi: \tilde{X} \rightarrow X$, minimal resolution, and θ an anti-Poisson involution of X .

Theorem (H.)

There exists a unique anti-symplectic involution $\tilde{\theta}: \tilde{X} \rightarrow \tilde{X}$ such that $\pi \circ \tilde{\theta} = \theta \circ \pi$. It can be constructed explicitly via quiver varieties.

We have $\pi^{-1}(X^\theta) = \pi^{-1}(0) \cup \tilde{X}^{\tilde{\theta}}$.

Fact: \tilde{X} smooth $\Rightarrow \tilde{X}^{\tilde{\theta}}$ is smooth Lagrangian (no intersection, no cusp).

Remark: The preimage $\pi^{-1}(X^\theta)$ is **NOT** reduced in general.

Write $\pi^{-1}(X^\theta) = \sum_{j=1}^m \mathbf{1} \cdot L_j + \sum_{i=1}^n a_i C_i$ as a divisor, where $L_j \simeq \mathbb{A}^1$, $C_i \simeq \mathbb{P}^1$. There are methods to determine the multiplicities a_i .

Thank You!